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INTRODUCTION

When black holes are observed using any of imaging techniques, there is always a dark region
often incorrectly labeled as the event horizon. This is related to the fact that light emitted
at certain distances away from the event horizon, at a certain ranges of angle do fall back
into the horizon. And this leads to the dark region in the images actually projecting a larger
circle(for a non-rotating black hole) than the event horizon and the region is labeled the
shadow. In this project, some properties of null geodesics are studied based on conserved
quantities following [ ] and then a different set of equations for geodesics is derived,
convenient to numerical simulations and ray-tracing for generating a virtual image. Ray
tracing technique to render an image of black hole with an accretion disk is also used in the

last section.

NULL GEODESICS IN SCHWARZSCHILD METRIC

Since we are going to study all the effects on null geodesics from distant imaging point of view,
it is feasible to use Schwarzschild coordinates (z, r, 0, ¢) where all of them have usual physical
interpretation except r is not the actually the radial distance but defined as r = v A/4m where

A is the total spherical area at r. The line element in the Schwarzschild metric goes as:
ds*=—(Q1—R/T)dt* + (1 —R/r)"'dr® + r*(d6® +sin” 0 d¢?) (1)

From the isometries of this metric, 2 of the Killing Vectors are % and % constraining the

motion in 8 = /2 plane. Since for any Killing vector K, Ku% is a conserved quantity along

the geodesic x#(1). Hence 2 of the conserved quantities in Schwarzschild metric are:

(1—R/r)ﬂ—E (2a)
dr
d¢
2—:
e L (2b)

If = E/L, also a conserved quantity, then from these 2 equations we get:

de  pr*

d¢ 1-R/r

3)
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For null geodesics d s2=0, so using (1) and (3) we get:

2
Although we have a differential equation for the null geodesic, this is not suitable for nu-
merical simulation because F(r) can turn negative, not necessarily due to non-physical
geodesic coordinate, but due to discretization of numerical scheme. The angle at which the
beam is released, ¥ can be computed from an infinitesimal triangle of vertices (r,7/2, ),
(r+dr,mnl/2,¢), (r,n/2,¢+ dp) using the line element from Eq(1):

coiy= (& ©
V=20 —rin d¢p
And then using Eq(4) we get:
) I'3,62
tYy=——- 6
coty =— (6)

Now since f is a constant along the geodesic, after some rearrangement we get a constant as
a function of r and ¢ which can be determined by the initial variables ry and ¢y:

2 r—R ro—R

r3siny  rdsin®y,

()

CONDITION FOR THE ESCAPE OF PHOTONS

Consider a beam that was emitted in some angle ¢ at some radial coordinate r. Now if the

beam is propagating outwards such that g—(; > 0, then for some point along the geodesic F(r)
can become 0 i.e £ = 0. Before this point one of the 3 situations can occur. 1. The beam can

d¢
go forward and r increases further, 2. The beam can revolve indefinitely at the same r or 3. it

can spiral inwards. If the first situation were to occur, F(r) becomes negative and this isn’t
physically allowed by Eq(4). The second situation would imply a non-differentiability of 3rd
order. Thus the only possibility is that it spirals inwards. Thus for any outward propagating
beam, if along the geodesic a critical point is obtained, it is going to spiral down.

In Figure 1, consider the 3 beams initiated outside a black hole with R = 1 at (r, 2) coor-
dinates(completely specifying (r,v)), all initiated in outwards direction (% > 0). Since [32
is constant, they move horizontally in this coordinate space. So beam A hits the boundary
curve where 4 = 0 and then starts falling inwards as explained earlier. While beam B being

d¢
in the same radial coordinate but initiated at an angle of higher 82 i.e lower 1 never hits the
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Figure 1: Boundary curve for apsis of light and the shaded regions show inaccessible regions

boundary curve and escapes to infinity. Beam C does the same with lower 52 hence larger v
but at a larger radial coordinate. The shaded region in the left is inside event horizon while
below boundary curve region is inaccessible because sin? € [0, 1]. This analysis implies that
for r > 3R/2, the light beam escapes to infinity to any value of 2 corresponding to ¥ € (0,7/2)
but for r < 3R/2 the beam escapes to infinity only if the value of 52 is above the maxima of
the boundary curve that is 4/27R3. Thus the beams only inside a cone escape to infinity and

the cone opens up fully in the region r > 3R/2.

SIMULATING GEODESICS FOR RAY-TRACING

As mentioned earlier, Eq (4) can’t be used to simulate the null geodesics because F(r) can
take negative values along the geodesic and if not, discretization may lead to the same. We

make a change of variable u = 1/r and then Eq (4) becomes:

du)®> 2
— | +tu"(1-Ru) = 8
( q <P) ( )=p (8)
The form of this equation is similar to that of energy conservation equation in Newtonian
2
dynamics: T+V = E where T = (3—};) with m = 2 having no physical significance, V =

u*(1- Ru) and E = ,62 also a constant of motion here. Thus, similar to Newtonian mechanics,
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du _ _dv .
weusemd(pz =T de to get:
d’u _ 3Ru®

dg? 2

u 9)

Through simulation it shall be demonstrated that a ray with 2 < 4/27R3 escape to infinity
no matter at what radial coordinate was it initiated or passes through. Meanwhile rays with

B? > 4/27R3 enter the photon sphere and spirals into the event horizon. Reason being that

du
a6
attain all the values from (0,00) allowing the beam to spiral in. But if 52 is less than the

2
if §2 is larger than the maxima of u?(1 — Ru), then ( ) is never negative and hence u can
maxima, the values of u are constrained. The beams will be first assumed to be initiated at
infinity towards the black hole, all parallel to each other, mimicking to ray-tracing technique
used when the camera is at a large distance(r >> R) from the black hole. But to simulate Eq

(10), 2 initial conditions are needed. One is obviously u = 0 since r— > oo and the other we
du
d¢

= f. So we get a set of coupled linear ODEs:

get from Eq (9), plugging u = 0 and condition that ( )A—O > 0 since the ray is approaching

the black hole, we get v = (44

A=0
du
@ =v (10a)
dv 3Ru?
@ = 2 - (IOb)

With the initial conditions u = 0, v = § at ¢» = 0. To interpret the visuals of the simulation,
the physical significance of § should be found. By definition it is E/L. And in r— > oo, the
spacetime is asymptotically Minkowskian. By convention the four-momentum along a null
geodesic in Minkowskian space is defined as % i.e choosing the affine parameter such
that %—f{) = E. Then correspondingly momentum and angular momentum can be quantified.
Making the identification L = |r x p|, for a null geodesic we get:

Where b is the impact parameter of the null geodesic. Thus the impact parameter indirectly
characterizes the escape or spiralling-in of the beam. Now with all the initial conditions

and the parameters, the null geodesic is simulated by using 4"

-order Runge-Kutta scheme
on Eq(11a) and Eq(11b). The result for different values of vy = f are shown in Figure 2. The
chosen value of Schwarzschild radius(R) is 1. It can be seen that for beams with  greater than

the critical value spiral into the horizon. The beam with . should have infinitely revolved
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Figure 2: Null geodesics with different impact parameters

in the photon sphere but it eventually spirals in after 1 revolution due to numerical error
of discretization and machine precision. The beams with f greater than the critical value
escape to infinity. A similar characteristic is observed if the beams were initiated at some
finite distance. The result for this simulation is shown in Figure 2. Here again R = 1 and
the radial coordinate where beams are initiated is ry = 4. For any chosen value of 3, the
initial conditions are up = 1/r and using Eq (9), vp = \/m . Using these, beams
with different § are simulated and it is again seen that those with higher than the critical
value of f spiral into the horizon. Now turning towards the relation of these geodesics to
image generation. Since the form of the geodesic equations using the Christoffel connection
in Schwarzschild metric is invariant under A— > —A[ ]. This means that the rays will
be retraced to the emission point if some other emitter is situated along the same geodesic.
Since all the monocular imaging techniques generate only the projection of rays onto the
sensor plan, only the angular position of emitters will be known. Now from Figure 3 it can be

seen that if a camera at (r = 4,¢ = 0) points to center, then only the rays with 2 < 4/27 reach
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Figure 3: Null geodesics with different § from a finite distance
the sensor plane from emitters at infinity. In astrophysical situations these correspond to all

the light sources/reflectors(stars, planets etc.) in the background. But all these beams when

reach the camera, they are incident on an angle(using Eq (7)):

.1 /r—R
W = arcsin —

3 (12)
And all the rays that initiated far away from the photon sphere have f3 less than the critical
value. So the largest value of vy is computed from B¢zicar = V4/27R3 is:

R3(r-R)

5 (13)

W min = arcsin

All the rays within the 2y ,,;, cone are traced back to emitters either nearer than the black

hole or those within the photon sphere. Assuming there aren’t any emitters there(the case
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for accretion disk will be taken up in the next section), the observer is not going to sense any
light in this angular region. And this region is called the 'shadow of the black hole’ This region

in the image is usually a black circular region in the image and hence the name.

RENDERING AN IMAGE OF A BLACK HOLE WITH ACCRETION DISK

The image rendering technique to be used here has a simple procedure though computa-
tionally very intensive. Every pixel in the camera corresponds to an angle at which a ray
reaches the pinhole/aperture. We first need initialize an angular width of view(y,,,4x) and a
pixel resolution(n,). Using these we compute a focal length as f = arctan(n, /¥ ,4x). Now
these quantities aren’t actually practical for the available telescopes but aren’t wrong for
numerical rendering. We assume that the camera’s plane is normal to the radial direction
that projects onto the midpoint of the camera’s plane. So for every pixel we initiate a beam
with uy = 1/7:amerqa and use the pixel’s direction from focus, i.e ¥, to compute S using Eq (7)
and hence vy using Eq (9).

Now we require a 3D map of emitters(position, intensity, color). Ideally, the GMHRD simula-
tions for the accretion disk should be run and a 3D map should be used but those simulations
require high compute(parallelization) and storage capacity. Even if a 3D map is available, due
to the non-linearity it is needed to be simulated in high resolution. Now if we are generating
an image of 400 x 400 then 160000 null geodesics need to be simulated and 400 is already not
a good resolution. So due to compute resource constraints, we consider a simple technique
were we take a pre-simulated image of the accretion disk from the top-view and without any
lensing and then render the same image with the ray-tracing technique according to different
camera coordinates. The image is first mapped to r = 1.5 to r = 4 in the x-z plane. Now if
any of the null geodesic enter this annular region, then the corresponding pixel is colored.
A suitable thickness is required because the RK4 scheme might just skip the region due to
discretization and that would lead to some false negatives in the image. The parameters set

for the camera were:

Angular resolution = 60°

Pixel resolution = 400 x 400

Radial coordinate = 10

Azimuthal position = 0°, 15°, 22.5°, 30°

With these technique and initialization, the following images were rendered on C++ code:
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(@) p=0° (b) ¢ = 15°

(©) p=225° (d) ¢ =30°

Figure 4: Images rendered using ray-tracing from different azimuths

CONCLUSION

From the 1st and 2nd section it was clear that photons emitted at certain distance withing the
photon sphere escape to infinity only if emitted in a cone of particular angle. Then in the next
sections, the conservation equations were modified for convenient numerical simulation of
null geodesics showing that rays incident towards the black hole spiral inwards for the values
of B higher than the critical. And those light rays coming from infinity reach an observer
outside a certain angular region given by Eq(14). Finally a ray-tracing technique was used to

image a black hole with an accretion disk in the last section.
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