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ABSTRACT

The Lagrangian, Hamiltonian and Hamilton-Jacobi equations of motion evolve from the optimization

of the action over time. Optimal control policies also stem from different methods of optimization of

cost over trajectory with different cost functions used for different scenarios. So to optimally control

a system, with known dynamics, an optimal control policy is designed through equations similar to

Hamiltonian equations(Pontryagin’s principle). Linear Quadratic Regulator is derived through this

principle also coded and tested to control an autonomously driven car on a simulator.

INTRODUCTION

The Lagrangian formulation of dynamics based on principle of extremal action gives the Euler-

Lagrange equation of motion. But the Lagrangian itself(whose time integral is to be extremized)

has to be constructed for different physical frameworks(Newtonian, special relativistic, quantum

field theoretic etc.) based on their fundamental requirements(certain covariance, algebraic form

of quantities, normalizations etc.). Once a suitable Lagrangian is constructed for a certain class

of canonical phase spaces, the trajectories extremizing the action could be found by either Euler-

Lagrange equation, Hamilton’s equations or Hamilton-Jacobi equation. In the engineering problems

relevant in innumerable areas like robotics, aerospace, automation, electronics, photonics etc. a

common problem statement occurs: i.e actuating the system to a desired state x in configuration

space optimally and keeping it stable there in spite of external disturbances. The metric of optimality

in controls is a Lagrangian that penalizes the system for being away from the target state and the

amount/force/energy of actuation given. The cost function is the time integral of this Lagrangian.

Penalizing the system for being away from target state is trivial to interpret given the ultimate reason

of deploying a control system in first place. But consider a cruise control in car; if it had near to infinite

acceleration and retardation capabilities then it could reach any desired speed within no time and

the integral(cost function) would be 0. Hence due to system constraints, power bounds and fuel

economy the control system has to trade off between error(desired state - current state) and actuation.

Adhering to these, we construct a suitable Lagrangian for the Linear Quadratic Regulator(LQR). Before

that(similar to classical mechanics) we first derive the control policy for an arbitrary Lagrangian

analogous to Hamilton’s equations of motion.

Variational optimization of cost function

If L(x, ẋ,u, t ) is the Lagrangian and the dynamics of the system is governed by the equation ẋ = f (x,u, t )

then this equation acts as a constraint for the optimization problem. Here x is the n-dimensional

state and u is the m-dimensional actuation vector representing m actuators powering and controlling

the system. We introduce n Lagrange multipliers comprising a costate vector represented as p(t ). So



Classical Mechanics-2 term paper

the problem reduces to minimizing the following cost function:

J =
∞∫

t0

(L(x, ẋ,u, t )+p(t )T ( f (x,u, t )− ẋ))d t (1)

Defining the quantity Hamiltonian inspired from mechanics as:

H = p(t )T ẋ−L (2)

Then the cost function becomes:

J =
∞∫

t0

(p(t )T f (x,u, t )−H)d t (3)

Introducing variations in all the independent, free variables δx,δu,δp and δẋ which is not an inde-

pendent variable but varies due to the dynamics ẋ = f (x,u, t ) resulting in the variation δJ :

δJ =
∞∫

t0

(δpT ẋ−δxT ṗ−δxT ∂H

∂x
−δpT ∂H

∂p
−δuT ∂H

∂u
)d t (4)

Integrating by parts the 1st integrand and after some manipulation we get:

δJ =
∞∫

t0

(δpT (ẋ− ∂H

∂p
)−δxT (ṗ+ ∂H

∂u
)−δuT ∂H

∂u
)d t (5)

To extremize J, δJ should be 0 for any arbitrary variation. Hence this gives rise to Pontryagin’s

principle of optimal control[Gee07], reminiscent of Hamilton’s equations of motion:

ẋ = ∂H

∂p
(6a)

ṗ =−∂H

∂x
(6b)

∂H

∂u
= 0 (6c)
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Linear Quadratic Regulator

System dynamics and the Lagrangian

This control system works best for linear systems(although any non-linear system could be linearized)

governed by the linear differential equation:

ẋ = Ax+Bu (7)

Here A is an n ×n and B is an n ×m matrix. Hence we are considering m actuators to control an n

dimensional system. Consider that our target state is x = 0(easily generalizable to any arbitrary target

state by the substitution x → x−x f in the rest of derivation). we define the Lagragian to quadratically

penalize the error(x−0) and actuation with the resulting Hamiltonian(using Eq. (2) and (7)) as:

L = 1

2
xT Qx+ 1

2
uT Ru (8a)

H = pT (Ax+Bu)− 1

2
xT Qx− 1

2
uT Ru (8b)

Here Q and R are positive definite matrices to ensure positive contributions to L.

Optimal control policy from Pontryagin’s principle

Taking gradient of Eq. (8b) w.r.t u and using Eq. (6c) of Pontryagin’s principle:

u = R−1B T p (9)

Taking gradient of Eq. (8b) w.r.t x and using Eq. (6b) of Pontryagin’s principle:

ṗ =Qx− A−1p (10)

Here we introduce a transformation matrix K (t) defined as p = K x. Then using Eq. (7), (9) and (10)

and substituting p = K x we get:

− K̇ x = (K A+K BR−1B T K −Q + AT K )x (11)

Now for control problems with infinite time horizons as in the considered case K̇ = 0 and this gives

the Continuous Algebraic Riccati Equation or CARE:

K =−A−1(K BR−1B T K −Q + AT K ) (12)
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Numerically, this equation can be solved using fixed point iteration method since it resembles the

problem of finding x for φ(x) = x. Now, once K is computed, the control policy nicely reduces to:

u = R−1B T K x (13)

This intuitively suggests that the actuation given in linear opposition to error which in this case is x

since the target state is 0. So, if we were to deploy LQR in a 1-dimensional system like cruise control

where the state to be controlled in speed and actuation is acceleration, then the acceleration will be

proportional to error in speed.

LQR for path tracking

To demonstrate LQR, a path tracking example is demonstrated in relevance to self-driving cars. In the

simulator Gazebo, consider a problem statement of autonomously controlling the steering wheel to

track a sinusoidal path at a constant speed.

Figure 1: Dynamic model of car for autonomous path tracking

With the objective being to keep the car on track, the state vector x = (ecg , ˙ecg ,θe , θ̇e )T where

ecg is called cross track error as clear from Fig:1, while θcg is the error in orientation of car given by

θp −θ from Fig:1. These two components have to be steered to 0. Now their time derivatives are also

included in the state vector because the car is supposed to be stable at ecg = 0 and θe = 0, hence their

derivatives will also be steered to 0. The only actuator we have here is the steering wheel, so u = δ i.e

1-dimensional actuation vector. The system is actually non-linear but it is linearized in the form of
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Eq.(7) as[Sni+09]: 
˙ecg

¨ecg

θ̇e

θ̈e

=


0 1 0 0

0 − c f +cr

mv
c f +cr

m
l f c f −lr cr

mv

0 0 0 1

0
lr cr −l f c f

Iz v
l f c f −lr cr

Iz
− l 2

f c f +l 2
r cr

Iz v




ecg

˙ecg

θe

θ̇e

+


0
c f

m

0
l f c f

I

δ (14)

Here m is mass, I is moment of inertia about vertical axis through COM, v is speed, c f and cr are

coefficients of slip force generated by front and rear wheels respectively. δ is the steering angle.

While running the simulation the input is the path(an array of coordinates) and the instantaneous

position and velocity of the car(which is maintained at 5 kmph using a separate PID controller). The

algorithm summarized would be:

Data: Path array, Constants of Eq.(14), Q

and R positive definite matrices

while System Running do
Get car’s position (sx , sy ) and

orientation θ

Search point of closest distance i.e

(cx ,cy )

Compute θp from path array using

finite difference

Compute magnitudes of the

components of x = (ecg , ˙ecg ,θe , θ̇e )

if sx cy − sy cx < 0 then
ecg →−ecg

if θe < 0 then
˙ecg →− ˙ecg

else
˙ecg → ˙ecg

end

else
ecg → ecg

if θe > 0 then
˙ecg →− ˙ecg

else
˙ecg → ˙ecg

end

end

end

Figure 2: Visualization of simulation in Rviz
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When this algorithm is implemented along with a PID controller for speed, result visualized

in Fig 2 is obtained. The result is nearly optimal and there are some fluctuations and steady state

error due to non-linearities in model, sensor and actuator noises etc. These could be rectified in

the upgraded version of LQR called i-LQG(iterative-Linear Quadratic Gaussian) that assumes sensor

noises to be Brownian and filters them, while non-linearity is handled by iterative procedure instead

of instantaneous one that we have done here. Although it works on the same principle as LQR.

The complete code can be found in [Sho19a] and a video of running simulation in [Sho19b]. To

get an intuition of why the Pontryagin’s principle automatically gives a closed loop feedback control

law in the form u = Cx consider the same system without any actuation. Then Eq (7) reduces to:

ẋ = Ax (15)

Solution of this system of linear differential equation is:

x(t) = eAt x(0) (16)

Diagonalizing the matrix A and exponentiating with time we get:

x(t) = P


eλ1t 0 0 0

0 eλ2t 0 0

0 0 ... 0

0 0 0 eλn t

P−1x(0) (17)

This shows that if any of the eigenvalues λi has a positive real part then the system will blow up to

infinity in configuration space in the direction along the corresponding eigenvector ei . But now if we

deploy a system, with the help of actuators, a control law u = Cx then Eq (7) reduces to:

ẋ = (A+BC)x (18)

Hence we have virtually changed the system and now we can steer all the eigenvalues λi wherever we

want, favourably keeping all the real parts negative and imaginary parts small(to reduce oscillatory

behaviour). And this is exactly what LQR does!
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